Abstract

Collagenase-1 is invariantly expressed by migrating basal keratinocytes in all forms of human skin wounds, and its expression is induced by contact with native type I collagen. However, net differences in enzyme production between acute and chronic wounds may be modulated by soluble factors present within the tissue environment. Basic fibroblast growth factor (bFGF, FGF-2) and keratinocyte growth factor (KGF, FGF-9), which are produced during wound healing, inhibited collagenase-1 expression by keratinocytes in a dose-dependent manner. However, KGF was >100-fold more effective than bFGF at inhibiting collagenase-1 expression, suggesting that this differential signaling is transduced via an FGF receptor that binds these ligands with different affinities. Reverse transcriptase-polymerase chain reaction analysis of human keratinocyte mRNA for fibroblast growth factor receptors (FGFRs) revealed expression of only FGFR-2 IIIb, the KGF-specific receptor, which also binds bFGF with low affinity, and FGFR-3 IIIb, which does not bind bFGF or KGF. FGFRs that bind bFGF with high affinity were not detected. Our results suggest that bFGF and KGF inhibit collagenase-1 expression through the KGF cell-surface receptor (FGFR-2 IIIb). Because bFGF induces collagenase-1 in most cell types, cell-specific expression of FGFR family members may dictate the regulation of matrix metalloproteinases in a tissue-specific manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.