Abstract
We performed nonradioactive in situ hybridization histochemistry in the monkey cerebellum to investigate the localization of protein kinase C-substrate (growth-associated protein-43 [GAP-43], myristoylated alanine-rich C-kinase substrate [MARCKS], and neurogranin) mRNAs. Hybridization signals for GAP-43 mRNA were observed in the molecular and granule cell layers of both infant and adult cerebellar cortices. Signals for MARCKS mRNA were observed in the molecular, Purkinje cell, and granule cell layers of both infant and adult cortices. Moreover, both GAP-43 and MARCKS mRNAs were expressed in the external granule cell layer of the infant cortex. In the adult cerebellar vermis, signals for both GAP-43 and MARCKS mRNAs were more intense in lobules I, IX, and X than in the remaining lobules. In the adult hemisphere, both mRNAs were more intense in the flocculus and the dorsal paraflocculus than in other lobules. Such lobule-specific expressions were not prominent in the infant cerebellar cortex. Signals for neurogranin, a postsynaptic substrate for protein kinase C, were weak or not detectable in any regions of either the infant or adult cerebellar cortex. The prominent signals for MARCKS mRNA were observed in the deep cerebellar nuclei, but signals for both GAP-43 and neurogranin mRNAs were weak or not detectable. The prominent signals for both GAP-43 and MARCKS mRNAs were observed in the inferior olive, but signals for neurogranin were weak or not detectable. The cell type- and region-specific expression of GAP-43 and MARCKS mRNAs in the cerebellum may be related to functional specialization regarding plasticity in each type of cell and each region of the cerebellum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.