Abstract

Turnover of cells within the odontogenic organ was studied in three dimensions by preparing serial sections of incisors from young male rats killed at various times following a single intraperitoneal injection of 1 muCi/g body weight of 3H-thymidine. Radioautographs showed that at 1 hour after injection labeled cells were present in all cell layers throughout the entire depth of the odontogenic organ. They were encountered frequently within the inner dental epithelium and stratum intermedium but appeared less abundant within the stellate reticulum and outer dental epithelium. With time, the frequency of labeled cells in each layer declined progressively, and more rapidly at the anterior and labial side of the odontogenic organ than toward its posterior and lingual side. Hence labeled cells were observed over the longest time interval in regions where cell layers were in closest proximity to the opening of the apical foramen, that is, near the apical and cervical loops. By 32 days after injection, numerous labeled cells could still be identified within the outer dental epithelium and stellate reticulum near the apical loop (bulbous part of the odontogenic organ) and the outer dental epithelium near the cervical loops ("U"-shaped part of the odontogenic organ). These findings support the hypothesis that cells originate within the bulbous part of the odontogenic organ and migrate anteriorly through the "U"-shaped and root sheath parts of the odontogenic organ during renewal of the incisor. It appears that individual stem cell compartments may be maintained for surface (outer/inner dental epithelium) and intermediate layers (stellate reticulum/stratum intermedium) in the odontogenic epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call