Abstract

Electrokinetic transport of Escherichia coli and Saccharomyces cerevisiae (baker's yeast) cells was evaluated in microfluidic devices fabricated in pristine and UV-modified poly(methyl methacrylate)(PMMA) and polycarbonate (PC). Chip-to-chip reproducibility of the cell's apparent mobilities (micro(app)) varied slightly with a RSD of approximately 10%. The highest micro(app) for baker's yeast cells was observed in UV-modified PC with 0.5 mM PBS (pH = 7.4), and the lowest was measured in pristine PMMA with 20 mM PBS (pH = 7.4). Baker's yeast in all devices migrated toward the cathode because of their smaller electrophoretic mobility compared to the EOF. In 0.5 mM and 1 mM PBS, E. coli cells migrated toward the anode in all cases, opposite to the direction of the EOF due to their larger electrophoretic mobility. E. coli cells in 20 mM PBS migrated toward the cathode, which indicated that the electrophoretic mobility of E. coli cells decreased at higher ionic strengths. Observed differential migrations of E. coli and baker's yeast cells in appropriately prepared polymer microchips were used as the basis for selective introduction into microfluidic devices of only one type of cell. As a working model, experiments were performed with E. coli and RBCs (red blood cells). RBCs migrated toward the cathode in pristine PMMA with 1 mM and 20 mM PBS (pH = 7.4), opposite to the direction of the E. coli cells. By judicious choice of the buffer concentration in which the cell suspension was prepared and the polymer material, RBCs or E. coli cells were selectively introduced into the microdevice, which was monitored via laser backscatter signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.