Abstract
BackgroundPlumbagin is as an important bioactive secondary metabolite found in the roots of Plumbago spp. The only one species, Plumbago europaea L., grows wild in Iran. The therapeutic use of plumbagin is limited due to its insufficient supply from the natural sources as the plants grow slowly and take several years to produce quality roots.ObjectivesTo develop an efficient protocol for the establishment of callus and cell suspension cultures of P. europaea and to evaluate production of plumbagin in callus and cell suspension cultures of P. europaea for the first time.Material and MethodsStems and leaves explants were cultured on agar solidified (7% w/v) MS media, supplemented with different combination of 2, 4-D and Kin or 6-Benzylaminopurin (BA) for callus induction. The rapid growing calli were cultured in liquid Murashige and Skoog (MS) media in agitated condition for establishing cell suspension cultures of P. europaea. Moreover, the effects of light and dark conditions on the cell growth, cell viability and plumbagin production in cell suspension cultures of P. europaea were assessed.ResultsFriable calli were successfully induced using stem segments of P. europaea in semisolid MS medium supplemented with 1 mg.L-1 2, 4-Dichlorophenoxy acetic acid (2, 4-D) and 0.5 mg.L-1of kinetin (Kin). Optimal cell growth was obtained when the cells were grown in MS liquid media supplemented with 1 mg.L-1 2, 4-D and 0.5 mg.L-1 kinetin with an initial cell density of ~3×105 cells per ml incubated in the dark at 25 ± 1 °C. Growth curve revealed that the maximum cell growth rate (14.83×105 cells per ml) achieved on the day 18 and the highest plumbagin content (0.9 mg.g-1 Dry Cell Weight (DCW)) in the cells was obtained at the late exponential phase under dark condition which determined by High Performance Liquid Chromatography (HPLC) technique. Based on the obtained results, cell viability remained around 82.73% during the 18 days of cell culture in darkness. These suspension cultures showed continuous and stable production of plumbagin.ConclusionsOur study suggests that cell suspension cultures of P. europaea represent an effective system for biosynthesis and production of plumbagin as a valuable bioactive compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.