Abstract

To better understand the dynamic interaction of cells with their surrounding extracellular matrix, chondrocytes and rat embryo fibroblasts were overlaid with individual collagen fibrils and observed with high-resolution video-enhanced differential interference contrast microscopy. Although the cells had a polygonal shape characteristic of nonmotile cells, they used processes usually associated with cell locomotion to acquire the collagen fibrils. Instead of being transported in a retrograde direction, fibrils on the dorsal cell surface were bent, and regions of the bent fibrils were shifted in diverse directions. A blocking antibody to the β1integrin subunit significantly inhibited collagen fibril acquisition and bending. Enhanced actin assembly was only occasionally associated with fibrils undergoing rearrangement. Considering that the relatively stiff collagen fibrils require the application of force to be bent, this study shows that cells with a polygonal morphology (as opposed to a polarized, motile shape) are capable of exerting force through the β1integrins on the dorsal surface of the cell. Analysis of the bending patterns indicates that fibril buckling was induced by retrograde force combined with regions held stationary and/or the fibrils were bent by forces acting in opposing directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.