Abstract

The preceding paper showed that those conditions that ought to stimulate reacylation of lysolipids in cells can increase cell adhesions. Similarly we found that conditions that would be expected to lead to the accumulation of lysolipids in the cell surface diminish cell adhesion. This paper reports on the answers to the following questions. (1) Is reacylation of lysolipids in the cells stimulated by an external supply of CoA, ATP and a fatty acid? (2) Does this reacylation lead to the incorporation of exogenous fatty acid in the plasmlemma? (3) What range of fatty acids can be incorporated into the plasmalemma and into what compounds? (4) Does the plasmalemma contain the enzyme systems to effect this turnover, namely phospholipase A2, a CoA-ligase and an appropriate acyl transferase(s)? (5) Do lysolipids accumulate in the plasmalemma under conditions which diminish cell adhesion? We find that saturated fatty acids in the range C14--C18, and some unsaturated fatty acids are incorporated into the plasmalemmae of these neural retina cells. About 20% of the plasmlemma content of fatty acids can be turned over in 30'. Incorporation is mainly into phosphatidyl choline, serine and ethanolamine in both R1 and R2 positions. The plasmalemmae contain the enzymes to effect the turnover. Isolated plasmalemmae are active in this turnover. Incubation of the plasmalemmae with phospholipase A2 leads to an accumulation of lysolipids. Very low levels of phospholipase stimulate turnover, possibly endogenous phospholipase activity is the rate-limiting step in the system. These findings are discussed in relation to the possible mechanisms by which lipids might affect adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call