Abstract

A rabbit antiserum raised against ACI rat liver biomatrix was used to identify components common to biomatrix and plasma membranes of adult hepatocytes. Biomatrix was isolated from intact rat livers by reverse perfusion via the inferior vena cava with sodium deoxycholate, nucleases and lipid extracting solvents. Immunoprecipitation analysis of detergent extracts of hepatocytes surface-labeled with 125I indicated that antibodies, purified from anti-biomatrix antiserum by adsorption and desorption from intact hepatocytes, showed reactivity with a single MW 105 kD component, designated Hep 105. Indirect immunofluorescence analysis showed that Hep 105 was expressed in some regions of the perisinusoidal space and in all three domains of the hepatocyte plasma membrane and was present on some but not all of the fibrous elements in frozen sections of biomatrix. The presence of Hep 105 on biomatrix was confirmed by immunoprecipitation analysis which showed that Hep 105 was present in components solubilized from biomatrix by sequential treatment with 0.5 M acetic acid, 0.05% collagenase and 4 M urea. Further characterization using immunoprecipitation analysis in combination with immobilized lectins and two-dimensional polyacrylamide gel electrophoresis (PAGE) indicated that Hep 105 was a non-collagen glycoprotein which showed charge heterogeneity and existed on the cell surface as a disulfide-linked heterodimer of apparent MW 125 kD. Two hybridomas, constructed by fusing P3 × 63Ag8 myeloma cells with spleen cells from mice immunized with intact hepatocytes, were shown by immunodepletion and two-dimensional gel electrophoretic analysis to be secreting monoclonal antibodies (Mab) against Hep 105. Examination of frozen sections of rat liver stained by indirect immunofluorescence showed that reactivity of both Mabs was concentrated in the bile canalicular domain of the hepatocyte plasma membrane, suggesting that the reactive epitopes were not accessible in the sinusoidal and intercellular membrane domains. Taken together, these results suggest that Hep 105 may play a role in the interactions between hepatocytes and extracellular matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.