Abstract

Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiological levels of estrogen on NO release from human internal thoracic artery endothelia and human arterial endothelia in culture. We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase activity in human endothelial cells by acting on a cell-surface receptor. NO release was measured in real time with an amperometric probe. 17beta-Estradiol exposure to internal thoracic artery endothelia and human arterial endothelia in culture stimulated NO release within seconds in a concentration-dependent manner. 17beta-Estradiol conjugated to bovine serum albumin also stimulated NO release, suggesting action through a cell-surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized this action. We further showed with the use of dual emission microfluorometry that 17beta-estradiol-stimulated release of endothelial NO was dependent on the initial stimulation of intracellular calcium transients. Physiological doses of estrogen immediately stimulate NO release from human endothelial cells through activation of a cell-surface estrogen receptor that is coupled to increases in intracellular calcium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.