Abstract

Immunocellular migrations out of and into the skin and modulations of functional cell surface molecules on antigen-presenting cells (APCs), as well as their immunoregulatory cytokine production, are important factors involved in the mechanism of UV-induced immunosuppression and tolerance. Of particular interest here are the effects of low-dose UVB exposures that can suppress the ability of a contact sensitizer to induce contact hypersensitivity (CHS) through the site (local immunosuppression) without inducing suppression of CHS induced through skin distant to the UV exposure. Such UV-irradiated skin has many changes with respect to composition of immunocompetent cells and cytokine production. After UV exposure, Langerhans cells/dendritic cells migrate from the skin to draining lymph nodes (DLNs) as they do from contact sensitizer-applied normal skin. On the other hand, UV causes monocytic/macrophagic cells to infiltrate into the dermis and then into the epidermis; these can also be shown to be induced by contact sesitizers to migrate to DLNs. Alterations in cell surface and immunoregulatory cytokine phenotypes of the cutaneous APCs in both the skin and DLNs are critical for CHS suppression and tolerance induction. Here we describe the phenotypic changes of immunocompetent cells in UV-irradiated skin in regard to CHS suppression and tolerance and methodologies to approach this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call