Abstract

Several isozymes of mammalian type 2, Mg(2+)-independent phosphatidic acid phosphatase (PAP-2) have recently been cloned, and they are predicted to have their catalytic sites exposed at the cell surface membranes. We investigated the mode of utilization of extracellular lipid substrates by the human PAP-2b expressed in HEK293 cells as a green fluorescent fusion protein. We first confirmed the plasma membrane localization of the expressed PAP-2b. PAP-2b actively hydrolyzed exogenously added lysophosphatidic acid and short-chain phosphatidic acid. In the case of dephosphorylation of lysophosphatidic acid, the reaction products, including inorganic phosphate and monoacylglycerol, were recovered exclusively in the extracellular medium. Interestingly, PAP-2b exhibited negligible activities toward long-chain phosphatidic acid either exogenously when added or generated within the membranes by treating the cells with bacterial phospholipase D. These findings indicate that PAP-2b acts at the outer leaflet of cell surface bilayers and can account for the ecto-PAP activities previously described for various types of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.