Abstract

Potential nanoparticle (NP) toxicity is one of crucial problems that limit the applicability of NPs. When designing NPs for biomedical and biotechnological applications it is thus important to understand the mechanisms of their toxicity. In this study, we analysed the stress responses of previously designed polyacrylic acid (PAA) and polyethylenimine (PEI) coated NPs on primary human myoblasts (MYO) and B16 mouse melanoma cell line. Negatively charged PAA did not induce cell toxicity, reactive oxygen species (ROS) or activate the transcription factor NF-κB in either cell line even at high concentrations (100μg/ml). On the other hand, positively charged PEI NPs induced a concentration dependent necrotic cell death and an increase in ROS following 24h incubation already at low concentrations (>4μg/ml). Moreover, PEI NPs induced NF-κB activation 15–30min after incubation in MYO cells, most probably through activation of TLR4 receptor. Interestingly, there was no NF-κB response to PEI NPs in B16 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call