Abstract
Organismal stress responses to oxidative stress are relevant to ageing and disease and involve key cell-/tissue-specific signal transduction mechanisms. Using Drosophila, an established in vivo model for stress studies, we show that cell-specific inositol phosphate signalling specifically via inositol 1,4,5 trisphosphate 3-kinase (InsP 3 3-K, IP 3K), negatively regulates organismal responses to oxidative stress. We demonstrate that the Drosophila Malpighian tubule (equivalent to vertebrate kidney and liver) is a key epithelial sensor for organismal oxidative stress responses: precise targeting of either gain-of-function constructs of Drosophila IP 3Ks ( IP 3 K-1 and IP 3 K-2), or loss-of-function (RNAi) constructs to only one cell type in tubule reversibly modulates survival of stress-challenged adult flies. In vivo, targeted IP 3 K-1 directly increases H 2O 2 production, pro-apoptotic caspase-9 activity and mitochondrial membrane potential. The mitochondrial calcium load in tubule principal cells–assessed by luminescent and fluorescent genetically-encoded mitochondrial calcium reporters–is significantly increased by IP 3K-1 under oxidative stress conditions, leading to apoptosis. The Drosophila orthologues of human apoptotic bcl-2 genes include debcl and buffy. Oxidative stress challenge does not modulate gene expression of either debcl or buffy in tubules; and altered debcl expression does not influence survival rates under oxidative stress challenge. Finally, targeted over-expression of either debcl or buffy to tubule principal cells does not impact on tubule caspase-9 activity. Thus, IP 3K-1 modulates epithelial cell apoptosis without involvement of bcl-2-type proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.