Abstract

Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call