Abstract

The eukaryotic cell cycle is the repeated sequence of events that enable the division of a cell into two daughter cells. It is divided into four phases: G1, S, G2, and M. Passage through the cell cycle is strictly regulated by a molecular interaction network, which involves the periodic synthesis and destruction of cyclins that bind and activate cyclin-dependent kinases that are present in nonlimiting amounts. Cyclin-dependent kinase inhibitors contribute to cell cycle control. Budding yeast is an established model organism for cell cycle studies, and several mathematical models have been proposed for its cell cycle. An area of major relevance in cell cycle control is the G1 to S transition. In any given growth condition, it is characterized by the requirement of a specific, critical cell size, PS, to enter S phase. The molecular basis of this control is still under discussion. The authors report a mathematical model of the G1 to S network that newly takes into account nucleo/cytoplasmic localization, the role of the cyclin-dependent kinase Sic1 in facilitating nuclear import of its cognate Cdk1-Clb5, Whi5 control, and carbon source regulation of Sic1 and Sic1-containing complexes. The model was implemented by a set of ordinary differential equations that describe the temporal change of the concentration of the involved proteins and protein complexes. The model was tested by simulation in several genetic and nutritional setups and was found to be neatly consistent with experimental data. To estimate PS, the authors developed a hybrid model including a probabilistic component for firing of DNA replication origins. Sensitivity analysis of PS provides a novel relevant conclusion: PS is an emergent property of the G1 to S network that strongly depends on growth rate.

Highlights

  • During the life cycle of eukaryotic cells, DNA replication is restricted to a specific time window, called the S phase

  • In the budding yeast Saccharomyces cerevisiae, a widely used model for the study of the eukaryotic cell cycle, a large body of evidence indicates that cells have to reach a critical size before they start to replicate their DNA and to form bud, which will give rise to the daughter cell

  • The authors present a mathematical model of the regulatory molecular network acting at the G1 to S transition

Read more

Summary

Introduction

During the life cycle of eukaryotic cells, DNA replication is restricted to a specific time window, called the S phase. It has been proposed that coordination of mass accumulation with cell cycle progression relies on a sizer mechanism, so that DNA replication and/or cell division start only when cells have reached a critical cell size (see [2] for a review). In this way, tiny newborn cells will have to grow more than mother cells before being able to overcome the cell size checkpoint. Both small and large cells will stabilize cell size to the ‘‘normal, average’’ value (Figure 1C)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call