Abstract

Signaling in tenocytes during development, homeostasis and injury involves multiple and redundant pathways. Given that tendons transmit mechanical forces from muscle to bone to effect movement, a key function for tenocytes is the detection of and response to mechanical stimulation. Mechanotransduction involves matrix-integrin-cytoskeleton to nucleus signaling, gap junction intercellular communication, changes in intracellular calcium (Ca(2+)), activation of receptors and their pathways, and responses to biochemical factors such as hormones, growth factors, adenosine triphosphate (ATP) and its derivatives, and neuromodulators. The primary cilium also plays a key role in the detection of mechanical signals. During development, transforming growth factor-β (TGF-β), bone morphogenetic protein (BMP), and hedgehog (Hh) signaling modulate tendon differentiation and formation. The response to injury is complex and varied involving not only inflammatory mediators such as interleukin-1β but also mechanosensing. This chapter reviews the signaling pathways tenocytes use during mechanotransduction, development and in response to injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call