Abstract

Damage to the nervous system can cause neuropathic pain, which is in general poorly treated and involves mechanisms that are incompletely known. Currently available animal models for neuropathic pain mainly involve partial injury of peripheral nerves. Multiple inflammatory mediators released from damaged tissue not only acutely excite primary sensory neurons in the peripheral nervous system, producing ectopic discharge, but also lead to a sustained increase in their excitability. Hyperexcitability also develops in the central nervous system (for instance, in dorsal horn neurons), and both peripheral and spinal elements contribute to neuropathic pain, so that spontaneous pain may occur or normally innocuous stimuli may produce pain. Inflammatory mediators and aberrant neuronal activity activate several signaling pathways [including protein kinases A and C, calcium/calmodulin-dependent protein kinase, and mitogen-activated protein kinases (MAPKs)] in primary sensory and dorsal horn neurons that mediate the induction and maintenance of neuropathic pain through both posttranslational and transcriptional mechanisms. In particular, peripheral nerve lesions result in activation of MAPKs (p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase) in microglia or astrocytes in the spinal cord, or both, leading to the production of inflammatory mediators that sensitize dorsal horn neurons. Activity of dorsal horn neurons, in turn, enhances activation of spinal glia. This neuron-glia interaction involves positive feedback mechanisms and is likely to enhance and prolong neuropathic pain even in the absence of ongoing peripheral external stimulation or injury. The goal of this review is to present evidence for signaling cascades in these cell types that not only will deepen our understanding of the genesis of neuropathic pain but also may help to identify new targets for pharmacological intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.