Abstract

Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported. Although the soft polystyrene (PS) is only 3nm thick, it is elastic, robust, and permeable to aqueous solutes, while significantly slowing down their diffusion. PEN-associated palladium (Pd) crystallization follows a diffusion-controlled zero-order kinetics rather than a reaction-controlled first-order kinetics in bulk solution. Each individual PEN reactor has a volume in the zeptoliter range, which offers a unique confined environment, enabling a directional inward crystallization, in contrast to the conventional outward nucleation/growth that occurs in an unconfined bulk solution. This strategy makes it possible to generate a set of mono-, bi-, and trimetallic, and even semiconductor nanocrystals with tunable interior structures, which are difficult to achieve with normal systems based on bulk solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.