Abstract

Cardiomyocytes undergo considerable changes in cell shape. These can be due to hemodynamic constraints, including changes in preload and afterload conditions, or to mutations in genes important for cardiac function. These changes instigate significant changes in cellular architecture and lead to the addition of sarcomeres, at the same time or at a later stage. However, it is currently unknown whether changes in cell shape on their own affect gene expression and the aim of this study was to fill that gap in our knowledge. We developed a single-cell morphotyping strategy, followed by single-cell RNA sequencing, to determine the effects of altered cell shape in gene expression. This enabled us to profile the transcriptomes of individual cardiomyocytes of defined geometrical morphotypes and characterize them as either normal or pathological conditions. We observed that deviations from normal cell shapes were associated with significant downregulation of gene expression and deactivation of specific pathways, like oxidative phosphorylation, protein kinase A, and cardiac beta-adrenergic signaling pathways. In addition, we observed that genes involved in apoptosis of cardiomyocytes and necrosis were upregulated in square-like pathological shapes. Mechano-sensory pathways, including integrin and Src kinase mediated signaling, appear to be involved in the regulation of shape-dependent gene expression. Our study demonstrates that cell shape per se affects the regulation of the transcriptome in cardiac myocytes, an effect with possible implications for cardiovascular disease.

Highlights

  • Cardiomyocytes (CMs) generate, and respond to, various types of biomechanical stress to maintain continuous contractile function of the heart

  • The accompanying increased preload and enlargement of the ventricle leads to eccentric hypertrophy, with geometric changes in cellular shapes changing the aspect ratio (AR) for length and width from 7:1 (AR7) to about 11:1 (AR11)

  • An increased afterload, namely a pressure overload, leads to concentric hypertrophy, which can, for example, change the cellular AR from 7:1 to 1:1 (AR1), and which can probably be observed in patients with hypertension [28] or other conditions [1, 10]

Read more

Summary

Introduction

Cardiomyocytes (CMs) generate, and respond to, various types of biomechanical stress to maintain continuous contractile function of the heart These hemodynamic constraints have profound effects on cellular architecture. An increased afterload, namely a pressure overload, leads to concentric hypertrophy, which can, for example, change the cellular AR from 7:1 to 1:1 (AR1), and which can probably be observed in patients with hypertension [28] or other conditions [1, 10]. The consequences of these include the induction of specific sets of genes related to cardiac maladaptation, known as the fetal pattern of gene

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call