Abstract

Synthesis of plasminogen activator inhibitor type-1 (PAI-1), a major physiological modulator of plasmin generation, is regulated by growth factors and changes in cell shape. To evaluate the specific relationship between PAI-1 gene expression and cytoarchitecture, serum-free cultures of quiescent rat kidney (NRK) cells were exposed to cytochalasin D (CD) at concentrations that disrupt microfilament structure. Treatment with 1-10 microM CD resulted in an increased 1) incidence of rounded cells, 2) relative PAI-1 mRNA content, and 3) fraction of PAI-1 protein-expressing cells. Abrupt increases in each response were evident at a final concentration of 5 microM CD. Maximal levels of induced PAI-1 transcripts (18-fold that of control) occurred 4 hours post-CD addition and declined thereafter but remained elevated (by at least tenfold) for 24 hours. Assessment of the metabolic requirements for CD-induced PAI-1 expression by using the protein synthesis inhibitors puromycin and cycloheximide indicated that PAI-1 transcripts were regulated in a complex manner in response to CD. The predominant mode of induction reflected secondary (protein synthesis-dependent) metabolic processes, although a minor, albeit significant, primary (protein synthesis-independent) pathway was also evident. PAI-1 mRNA levels in NRK cells maintained in serum- and CD-free agarose suspension culture were low or undetectable. Relative abundance of PAI-1 transcripts in suspended cells cultured in the presence of CD, however, closely approximated that of plastic-adherent, CD-treated cells (13-fold over control). NRK cells in suspension culture with or without CD were morphologically identical, remaining spherical and unattached. It appears, therefore, that cell rounding alone is not a sufficient stimulus to induce PAI-1 expression in quiescent NRK cells and that perturbation of the actin skeleton as a consequence of CD treatment is a critical event in the inductive response. A protein tyrosine kinase is likely involved in the CD-mediated signal-transduction cascade, since induced PAI-1 expression can be down-regulated by genistein and herbimycin A but not by calphostin C or tyrphostin B46.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call