Abstract

BackgroundUnlike in abscission or dehiscence, fruit of kiwifruit Actinidia eriantha develop the ability for peel detachment when they are ripe and soft in the absence of a morphologically identifiable abscission zone. Two closely-related genotypes with contrasting detachment behaviour have been identified. The ‘good-peeling’ genotype has detachment with clean debonding of cells, and a peel tissue that does not tear. The ‘poor-peeling’ genotype has poor detachability, with cells that rupture upon debonding, and peel tissue that fragments easily.ResultsStructural studies indicated that peel detachability in both genotypes occurred in the outer pericarp beneath the hypodermis. Immunolabelling showed differences in methylesterification of pectin, where the interface of labelling coincided with the location of detachment in the good-peeling genotype, whereas in the poor-peeling genotype, no such interface existed. This zone of difference in methylesterification was enhanced by differential cell wall changes between the peel and outer pericarp tissue. Although both genotypes expressed two polygalacturonase genes, no enzyme activity was detected in the good-peeling genotype, suggesting limited pectin breakdown, keeping cell walls strong without tearing or fragmentation of the peel and flesh upon detachment. Differences in location and amounts of wall-stiffening galactan in the peel of the good-peeling genotype possibly contributed to this phenotype. Hemicellulose-acting transglycosylases were more active in the good-peeling genotype, suggesting an influence on peel flexibility by remodelling their substrates during development of detachability. High xyloglucanase activity in the peel of the good-peeling genotype may contribute by having a strengthening effect on the cellulose-xyloglucan network.ConclusionsIn fruit of A. eriantha, peel detachability is due to the establishment of a zone of discontinuity created by differential cell wall changes in peel and outer pericarp tissues that lead to changes in mechanical properties of the peel. During ripening, the peel becomes flexible and the cells continue to adhere strongly to each other, preventing breakage, whereas the underlying outer pericarp loses cell wall strength as softening proceeds. Together these results reveal a novel and interesting mechanism for enabling cell separation.

Highlights

  • Unlike in abscission or dehiscence, fruit of kiwifruit Actinidia eriantha develop the ability for peel detachment when they are ripe and soft in the absence of a morphologically identifiable abscission zone

  • Structural comparisons of two A. eriantha genotypes showed the absence of an abscission-type detachment zone In ripe fruit of the GP genotype, peel tissue detached in one piece, cleanly and in even thickness from the flesh, indicating strong adherence of cells within the peel tissue (Fig. 1a, b)

  • Our research showed that the main aspects that seem important for development of peelability are differences in degree of methylesterification, galactose loss, and PG and Xyloglucan transglycosylase/hydrolase (XTH) enzyme action, leading to spatially distinct softening zones that are detachable once the fruit is soft

Read more

Summary

Introduction

Unlike in abscission or dehiscence, fruit of kiwifruit Actinidia eriantha develop the ability for peel detachment when they are ripe and soft in the absence of a morphologically identifiable abscission zone. Cell separation can occur locally, leading to development of intercellular spaces in leaves or fruit for example. Both abscission and dehiscence take place at predetermined zones of isodiametrically flattened cells, arranged in anything between two to 50 cell layers [2, 3]. These cells start to differentiate some time before the actual organ separation, and remain arrested in this developmental stage until a diverse set of signals, including ethylene and auxin, trigger a cascade of expression of genes whose products regulate the actual cell separation. In the model that Sexton and Roberts [4] presented, ethylene is the primary signal that drives the leaf abscission process, whereas auxin reduces the sensitivity of abscission zone cells to ethylene, preventing or delaying abscission

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.