Abstract

We investigated properties of cells affecting their optical trapping force and successfully established a novel cell separation method based on the combined use of optical trapping force and microfluidics on a microchip. Our investigations reveal that the morphology, size, light absorption, and refractive index of cells are important factors affecting their optical trapping force. A sheath flow of sample solutions created in a microchip made sample cells flow in a narrow linear stream and an optical trap created by a highly focused laser beam captured only target cells and altered their trajectory, resulting in high-efficiency cell separation. An optimum balance between optical trapping force and sample flow rate was essential to achieve high cell separation efficiency. Our investigations clearly indicate that the on-chip optical trapping method allows high-efficiency cell separation without cumbersome and time-consuming cell pretreatments. In addition, our on-chip optical trapping method requires small amounts of sample and may permit high-throughput cell separation and integration of other functions on microchips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.