Abstract

This study aimed to develop a new symmetric-end antimicrobial peptide (AMP) with cell selectivity, antibiofilm, and anti-inflammatory activities. Two symmetric-end AMPs, Lf6-pP and Lf6-GG, were designed based on the sequence RRWQWRzzRWQWRR, which contains two symmetric repeat sequences connected by a β-turn-promoting sequence (zz) that can be a rigid turn by D-Pro-Pro (pP) or a flexible turn by Gly-Gly (GG). Both Lf6-pP and Lf6-GG exhibited potent antibacterial activity without causing hemolysis, but Lf6-pP exhibited better cell selectivity, likely due to the more significant impact of the rigid pP turn. Compared to Lf6-GG, Lf6-pP demonstrated approximately three times higher antimicrobial activity against drug-resistant bacteria, had a low incidence of drug resistance, and maintained its activity in the presence of physiological salts and human serum. Additionally, Lf6-pP was more effective than Lf6-GG in inhibiting biofilm formation and eradicating mature biofilms. The BODIPY-cadaverine assay indicated that the potent anti-inflammatory activity of Lf6-pP may be attributed to its direct interaction with LPS, resulting in decreased TNF-α and IL-6 levels in LPS-stimulated macrophages. Mechanistic studies, including membrane depolarization, outer/inner membrane permeation, and membrane integrity change, demonstrated that Lf6-pP exerts its antibacterial action through an intracellular-target mechanism. Overall, we propose that Lf6-pP has potential as a novel antibacterial, antibiofilm, and anti-inflammatory agent against drug-resistant bacterial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.