Abstract
Cell segmentation is a fundamental problem of computational biology, for which convolutional neural networks yield the best results nowadays. This field is expanding rapidly, and in the recent years, shape-constrained segmentation models emerged as strong competitors to traditional, pixel-based segmentation methods for instance segmentation. These methods predict the parameters of the underlying shape model, so choosing the right shape representation is critical for the success of the segmentation. In this study, we introduce two new representation-based deep learning segmentation methods after a quantitative comparison of the most important shape descriptors in the literature. Our networks are based on Fourier coefficients and statistical shape models, both of which have proven to be reliable tools for cell shape modelling. Our results indicate that the methods are competitive alternatives to the most widely used baseline deep learning algorithms, especially when the number of parameters for the underlying shape model are low or the cells to be segmented have irregular morphologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.