Abstract

Studies in the vertebrates have shown that the time-locking ability of central auditory neurons decreases progressively along the ascending auditory pathway. This decrease is presumably attributed to a progressive reduction in the fidelity of synaptic transmission and an increase in the influence of synaptic inhibition along the cascade. The extent to which neurons' intrinsic biophysical properties contribute to the change in time-locking ability is unclear. We carried out whole-cell patch clamp recordings from the auditory thalamus of leopard frogs and compared their biophysical properties and time-locking abilities (determined by cell's responses to depolarizing pulse trains applied intracellularly) with those of lower auditory brainstem neurons. We found that frog thalamic neurons were homogeneous, exhibiting uniformly sustained, regular firing patterns, but not having low-threshold transient Ca2+ current which mammal thalamic neurons generally possess. Furthermore, intrinsic biophysical properties of the thalamic neurons are such that the time-locking ability of these neurons was very poor. The homogeneity of thalamic auditory neurons is in contrast to the heterogeneity of lower auditory brainstem neurons, with different phenotypes exhibiting different time-locking abilities and with sustained-regular phenotype consistently showing the worst time-locking ability among all biophysical phenotypes. Auditory nuclei along the ascending auditory pathway showed a progressive increase in the population of sustained-regular phenotype—this corresponded to a systematic decrease in the overall time-locking ability, with neurons in the dorsal medullary nucleus showing the best, and thalamic neurons exhibiting the poorest time-locking ability, whereas neurons in the torus semicircularis displayed intermediate time-locking ability. These results suggest that the biophysical characteristics of single neurons also likely play a role in the change in temporal coding ability along the ascending auditory pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.