Abstract

The maintenance of photovoltaic (PV) power plants is of central importance for their yield. To reach higher efficiencies in PV parks, it is helpful to detect soiling such as dust deposition and to apply this information to optimize cleaning strategies. Furthermore, a periodic inspection of the PV modules with infrared (IR) imagery is of advantage to detect and potentially remove faulty PV modules. Soiling can be erroneously interpreted as PV module defects and hence spatially resolved soiling measurements can improve the results of IR-based PV inspection. So far, soiling measurements are mostly performed only locally in PV fields, thus not supporting the above-mentioned IR inspections. This study presents a method for measuring the soiling of PV modules at cell resolution using RGB images taken by aerial drones under sunny conditions. The increase in brightness observed for soiled cells under evaluation, compared to clean cells, is used to calculate the transmission loss of the soiling layer. Photos of a clean PV module and a soiled module for which the soiling loss is measured electrically are used to determine the relation between the brightness increase and the soiling loss. To achieve this, the irradiance at the time of the image acquisitions and the viewing geometry are considered. The measurement method has been validated with electrical measurements of the soiling loss yielding root mean square deviations in the 1% absolute range. The method has the potential to be applied to entire PV parks in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call