Abstract

Cell polarity is orchestrated by numerous extracellular cues, and guides events such as chemotaxis, mitosis and wound healing. In scrape-wound assays of cell monolayers, wound-edge cells orient their centrosomes towards the wound, a process that appears to depend on the formation of new cell-extracellular-matrix adhesions as cells spread into the wound. In direct contrast to scrape-wounded cells, isolated cells without cell-cell contacts failed to polarize, suggesting that asymmetry of cell-cell adhesions resulting from monolayer disruption might contribute to polarization. By using micropatterned substrates to engineer such asymmetries in kidney epithelial cells, we found that cell-cell contact induced displacement of the nucleus towards the contact, and also caused centrosomal reorientation and lamellipodial ruffling to the distal side of the nucleus. Upon release from micropatterned constraints, cells exhibited directed migration away from the cell-cell contact. Disrupting E-cadherin engagement randomized nuclear position and lamellipodial ruffling in patterned cultures, and abrogated scrape-wound-induced cell reorientation, but not migration rate. Polarity that was induced by cell-cell contact required an intact actin cytoskeleton and Cdc42 activity, but not RhoA or Rac signaling. Together, these findings demonstrate a novel role for cell-cell adhesion in polarization, and have implications for wound healing and developmental patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.