Abstract

The importance of cell polarity as a fundamental biological principle is increasingly recognized in the cardiovascular system. Polar cell mechanisms underlie not only the development of the heart and blood vessels, but also play a major role in the adult organism for polarized endothelial functions such as the separation of the intra- and extravascular compartment and the vectorial exchange of substances between these compartments. Endothelial cells are connected through intercellular junctions which separate the functionally and structurally distinct luminal and abluminal cell surfaces. The luminal plasma membrane is in contact with the blood and takes part in the regulation of hemostasis. The abluminal cell membrane connects the endothelial cell with the basement membrane and modulates blood flow through the release of vasoactive substances. Results from epithelial model systems have shown that the polarized cell phenotype is generated by specific protein sorting and regulated protein trafficking between the trans-Golgi network and the cell surface. The polarized distribution of cell membrane proteins is maintained by anchorage with the cytoskeleton and limitation of lateral diffusion by tight junctions. Disturbances of cell polarity may contribute to the pathogenesis of disease states, including ischemic and radiocontrast-induced acute renal failure and carcinomas. Recent results have demonstrated the importance of cholesterol for protein traffic from the trans-Golgi network to the apical cell membrane. This novel intracellular function of cholesterol could point to a connection between cell polarity and the pathogenesis of arteriosclerosis. The polarity of the endothelium also has to be taken into account when developing gene-therapeutic strategies, since therapeutic success will not only depend on the efficient expression of the desired gene product, but also on its correct cellular location or secretion into the correct extracellular compartment. These examples demonstrate the biological and potentially clinical relevance of cell polarity in the cardiovascular system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call