Abstract

Peptidic drugs have many advantages as compared to small chemical molecules; however, they also possess some limitations as their poor membrane transducing properties. Our group has recently reported the potent anti-HIV antiviral activity of CIGB-210, a peptide derived from human keratin 10. Previous experiments showed that this peptide is internalized in MT4 cells. The aim of this study was to expand our knowledge on the uptake of CIGB-210 by assessing the peptide penetration in four other human cell lines. Cells were treated with 10, 20 and 40 µM of fluorescein-labelled CIGB-210 and the percentage of fluorescent cells was determined by flow cytometry at 15 min, 1 and 24 h. The uptake of fluorescein-labelled CIGB-210 in THP-1, HEp-2, HepG2 and PC-3 cell lines was directly proportional to both, peptide concentration and incubation times. However, some differences in the kinetics of cell entry were found. While the initial uptake was faster in HepG2 and PC-3 cells, after 24 h of incubation the percentage of fluorescence cells was equalized, although HEp-2 cells exhibited the higher numbers. The efficiency of CIGB-210 uptake was lower than a control cell penetrating peptide. However, despite the differences found, CIGB-210 was capable of transducing four human cell lines of different origins without any help. Finally, circular dichroism spectrometry data indicated that the peptide adopt a mostly disordered structure in aqueous solution, with an estimated alpha helical content of less than 5%. This study contributes to the characterization of CIGB-210 as a novel drug candidate against HIV/AIDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call