Abstract

Cell penetrating peptides can be used as therapeutic agents via modulation of selective cell functions. Nitric oxide (NO) generated by vascular endothelial NO synthase (eNOS) plays a critical role in the NO/ cyclic guanosine 5'-monophosphate (cGMP)-mediated pulmonary vascular function. Here we examined whether internalization of a fifteen amino acid (KRFNSISCSSWRRKR) synthetic peptide (P3) enhances the catalytic activity of eNOS via caveolae/eNOS dissociation leading to NO release and increased cGMP production in pulmonary artery endothelial cells (EC). ECs were treated with varying concentrations of P3 and used to monitor internalization, isolation of caveolae-enriched fraction, the catalytic activity of eNOS, NO/cGMP production, and intracellular Ca(2+) release. Confocal images show timedependent internalization of P3 in EC. Treatment of EC with P3, but not scrambled P3, increased the catalytic activity of eNOS in a dose-dependent manner without change in eNOS expression or phosphorylation. Treatment of EC with P3 stimulated intracellular Ca(2+) release, increased the catalytic activity of phospatidylinsositide 3 kinase (PI3K) and resulted in eNOS/caveolae-1 (Cav-1) dissociation leading to translocation of eNOS to intracellular compartment in EC. P3- mediated activation of eNOS was abolished by intracellular Ca(2+) chelator 1,2-bis(2-aminophenooxy)ethane-N,N,N',N'- tertraacetic acid-AM (BAPTA-AM), PI3K inhibition, or by siRNA-mediated Cav-1 suppression. These results demonstrate that exogenous peptide consisting of cationic amino acids can internalize and enhance the catalytic activity of eNOS via modulation of caveolar signaling and intracellular Ca(2+) release in EC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.