Abstract
Active tether and transportation of cargoes on cytoskeletal highway enabled by molecular motors is key for accurate delivery of vesicles and organelles in the complex intracellular environment. Here, a hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells. The colloidal motors, composed of gold-coated hematite, display light-activated self-propulsion tunable by the light intensity and the concentration of hydrogen peroxide fuel. Importantly, the motors show light-switchable binding with lipid cargoes and attachment to the lipid tubes, whereby the latter act as the motor highways. Upon assembly, the colloidal motor/lipid tube system demonstrates directional delivery of lipid vesicles, emulating intracellular transportation. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects, supported by finite element analysis. A synthetic analog of the biological protein motor/cytoskeletal filament system is realized for the manipulation and delivery of different matter at the microscale, which is expected to be a promising platform for various applications in materials science, nanotechnology, microfluidics, and synthetic biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.