Abstract
Avian influenza virus (AIV) causes acute infectious diseases in poultry, critically impacting food supply. Highly pathogenic avian influenza viruses (HPAIVs), in particular, cause morbidity and mortality, resulting in significant economic losses in the poultry industry. To prevent the spread of HPAIVs, detection at early stages is critical to implement effective countermeasures such as quarantine and isolation. Through a viral fusion mechanism, cell-mimetic nanoparticles (CMPs), developed in the current study, can rapidly detect HPAIV and low pathogenic AIV (LPAIV). The CMPs comprise polymeric nanoparticles, which are constructed using sialic acid and fluorescence resonance energy transfer (FRET) dye pairs that expose the FRET off signal in response to LPAIV and HPAIV, after activation by enzymatic cleavage in the endosomal environment. The CMPs detect a wide variety of LPAIVs and HPAIVs in biological environments. Additionally, the cross-reactivity of CMPs is determined by testing their function with different viral species. Therefore, these findings demonstrate the significant potential of the proposed strategy for mimicking viral infection in vitro and using them as a highly effective diagnostic assay to rapidly detect LPAIV and HPAIV, preventing economic losses associated with viral outbreaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.