Abstract

In the evolution of land-living vertebrates, the transition from spending the entire life cycle in the water to first a biphasic (adult on land, eggs and larvae in water) and later a terrestrial life-history mode was achieved by changes in developmental processes and regulatory mechanisms. Lungfishes, salamanders and frogs are studied as examples of species which span this transition. The migration and fate of the embryonic cells that form the head is studied, using experimental embryology (extirpation and transplantation of cells), molecular markers and novel microscopy techniques — such as confocal microscopy. Knowing the migratory routes and fates of the cells that form head structures is important for an elucidation of the changes that took place e.g. when gill arches transformed into head cartilages, and when the specialised larval mouth structures present in today’s frogs and toads arose as an evolutionary innovation. Results so far indicate that the early migration and pattern formation of neural crest cells in the head region is surprisingly conserved. Both the amphibians investigated and the Australian lungfish have the same number of migrating neural crest streams, and the identity of the streams is preserved. The major difference lies in the timing of migration, where there has been a heterochronic shift such that cell migration starts much later in the Australian lungfish than in the amphibians. The molecular mechanisms regulating the formation of streams of cranial neural crest cells seem, at least in part, to be differential expression of ephrins and ephrin receptors, which mediate cell sorting. Our understanding of the behaviour of migrating cells (primarily the more well characterised neural crest cells) could be enhanced by a modelling approach. I present preliminary ideas on how this could be achieved, inspired by recent work on Dictyostelium development and our own previous work on pigment cells and their pattern formation during salamander embryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.