Abstract

In this study, a novel cyclodextrin derivative, i.e., zwitterionic choline phosphate (CP)-functionalized β-cyclodextrin (CP-β-CD) is successfully synthesized by click chemistry reaction. CP-β-CD has excellent cell-membrane-targeted ability because of the CP group can bind to phosphate choline (PC) in the cell membrane and promote the cellular uptake. Due to the introduction of CP group on β-CD, it disrupts the hydrogen network between natural β-CD molecules. Meanwhile, the water solubility of CP-β-CD is improved dramatically to 816mg mL-1 , which is 440 times as that of unmodified β-CD. Apatinib, a small molecular inhibitor, is used as a model of hydrophobic drug and loaded into CP-β-CD to study the solubilization effect and the anti-angiogenisis activity. In addition, the cytotoxicity of CP-β-CD is also studied, and it is demonstrated that CP-β-CD is nontoxic. These results indicate that the apatinib can be transported into cell interior and play an excellent anti-angiogenisis activity after being loaded into CP-β-CD drug delivery system. This work suggests that the water soluble CP-β-CD with excellent cell internalization efficiency has a potential application prospect in the field of drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.