Abstract
Many cell types respond to mechanical membrane perturbation with intracellular Ca2+ responses. Stretch-activated (SA) ion channels may be involved in such responses. We studied the occurrence as well as the underlying mechanisms of cell membrane stretch-evoked responses in fetal chicken osteoclasts using separate and simultaneous patch-clamp and Ca2+ imaging measurements. In the present paper, evidence is presented showing that such responses involve a self-reinforcing mechanism including SA channel activity, Ca(2+)-activated K+ (KCa) channel activity, membrane potential changes and local and general intracellular Ca2+ ([Ca2+]i) increases. The model we propose is that during membrane stretch, both SA channels and KCa channels open at membrane potential values near the resting membrane potential. SA channel characterization showed that these SA channels are permeable to Ca2+. During membrane stretch, Ca2+ influx through SA channels and hyperpolarization due to KCa channel activity serve as positive feedback, leading ultimately to a Ca2+ wave and cell membrane hyperpolarization. This self-reinforcing mechanism is turned off upon SA channel closure after cessation of membrane stretch. We suggest that this Ca2+ entry mechanism plays a role in regulation of osteoclast activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.