Abstract
BackgroundImmortalized mammalian cell lines are a valuable research tool, though they represent a highly simplified model. Due to accumulated mutations they may not reflect characteristics of the disease or even the tissue they derive from. ObjectiveWe aim to pinpoint factors distinguishing SeAx cells from two other cutaneous T-cell lymphoma (CTCL) cell lines, namely Hut78 and MyLa2000. Of note, these factors may influence cell sensitivity in an unspecific way and therefore should be taken under consideration. MethodsWe evaluated transcriptional levels of drug transporters across cell lines, cell membrane permeability, functionality of pathways related to DNA damage response and activation of G2/M block. ResultsAnalysis of the transcriptional levels of genes coding drug efflux pumps indicated that they are not consistently down-regulated in SeAx. However, we noted that SeAx cell membrane is markedly more permeable than Hut78 and MyLa2000, which may contribute to increased chemosensitivity in an unspecific way.Moreover, though DNA damage response seemed to be at least partly functional in SeAx cells, they fail to activate G2/M block in response to psoralen + UVA treatment. Any DNA damage should be repaired before cells enter mitosis, in order to uphold genome integrity. Thus, a defective cell cycle block may contribute to cell sensitivity. ConclusionsWe believe that factors such as increased membrane permeability or defective cell cycle block should be accounted for when comparing sensitivity of cell line panels to chemotherapeutics of interest. It is worth to exclude a simple, indiscriminative mechanisms of cell resistance or sensitivity before attempting comparisons. Cell lines that are indiscriminately sensitive to a broad range of chemicals may contribute to overestimating the cytotoxic potential of tested compounds if used in cytotoxicity studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.