Abstract

Local transversal micromotions of cell membranes have been reported. These may provide the physical basis for changes in membrane fluidity. In this study, tissue scattering properties are used to measure the magnitude of transversal micromotions under varying stimuli. Laser light is directed at the cell surface at a low incident angle of 12 degrees so that reflected or refracted light does not enter the microscope objective. Scattered light showed strong low-frequency intensity fluctuations with random-walk behavior. Fluctuations were quantified by the median coefficient of variation over the entire observed cell area. Incubation of the cells with protein crosslinkers (paraformaldehyde) and metabolic suppressors (sodium azide) suppressed these fluctuations by 62 and 44%, respectively. The application of hypoosmotic media caused an increase of fluctuation magnitude by 23% (p < 0.005). Agents that increase membrane fluidity (2% ethanol and xenon) increased fluctuation magnitude by 15 and 31%, respectively (p < 0.05). Cessation of the ethanol and xenon exposure led to partial recovery of the fluctuation magnitude, which was nonsignificant for ethanol. This study shows a strong link between membrane fluidity and transversal membrane undulations and provides an important step in the understanding of the mechanosensing function of the cell membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call