Abstract

Poor selectivity and unintended toxicity to normal organs are major challenges in calcium ion (Ca2+ ) overload tumor therapy. To address this issue, a cell membrane-anchoring nano-photosensitizer (CMA-nPS) is constructed for inducing tumor-specific Ca2+ overload through multistage endogenous Ca2+ homeostasis disruption under light guidance, i.e., the extracellular Ca2+ influx caused by cell membrane damage, followed by the intracellular Ca2+ imbalance caused by mitochondrial dysfunction. CMA-nPS is decorated by two types of functionalized cell membranes, the azide-modified macrophage cell membrane is used to conjugate the dibenzocyclooctyne-decorated photosensitizer, and the vesicular stomatitis virus glycoprotein (VSV-G)-modified NIH3T3 cell membrane is used to guide the anchoring of photosensitizer to the lung cancer cell membrane. The in vitro study shows that CMA-nPS mainly anchors on the cell membrane, and further causes membrane damage, mitochondrial dysfunction, as well as intracellular Ca2+ overload upon light irradiation. Synergistically enhanced antitumor efficiency is observed in vitro and in vivo. This study provides a new synergistic strategy for Ca2+ -overload-based cancer therapy, as well as a strategy for anchoring photosensitizer on the cell membrane, offering broad application prospects for the treatment of lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.