Abstract

Cell adhesion requires nanometer scale membrane alignment to allow contact between adhesion receptors. Little quantitative information is presently available on this important biological process. Here we present an interference reflection microscopic study of the initial interaction between monocytic THP-1 cells and adhesive surfaces, with concomitant determination of cell deformability, using micropipette aspiration, and adhesiveness, using a laminar flow assay. We report that 1), during the first few minutes after contact, cells form irregular-shaped interaction zones reaching ∼100 μm 2 with a margin extension velocity of 0.01–0.02 μm/s. This happens before the overall cell deformations usually defined as spreading. 2), These interference reflection microscopic-detected zones represent bona fide adhesion inasmuch as cells are not released by hydrodynamic forces. 3), Alignment is markedly decreased but not abolished by microfilament blockade with cytochalasin or even cell fixation with paraformaldehyde. 4), In contrast, exposing cells to hypotonic medium increased the rate of contact extension. 5), Contacts formed in presence of cytochalasin, after paraformaldehyde fixation or in hypotonic medium, were much more regular-shaped than controls and their extension matched cell deformability. 6), None of the aforementioned treatments altered adhesiveness to the surface. It is concluded that adhesive forces and passive membrane deformations are sufficient to generate initial cell alignment to adhesive surfaces, and this process is accelerated by spontaneous cytoskeletally-driven membrane motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call