Abstract

Staggerer (sg) is an autosomal recessive mutation in mouse that causes severe cerebellar atrophy. In this mutant, the Purkinje cell (PC) number is reduced by about 75% and the remaining Purkinje cells have a reduced dendritic arbor and an ectopic location. Previous analysis of staggerer chimeras has demonstrated that the Purkinje cell phenotypes are all direct consequences of the cell–autonomous action of the staggerer gene. The two major afferents to the Purkinje cell are also affected. Virtually all of the granule cells die by the end of the first postnatal month. This death, however has been shown to be an indirect consequence of mutant gene action. The second major afferent system is from the cells of the inferior olive that project to the main trunks of the Purkinje cell dendrite via the climbing fiber system. Quantitative studies of cell number in the inferior olive have shown that the number of cells is reduced by about 62% in adult sg/sg mutants. We report here the results of our quantitative analysis of three staggerer chimeras. β-glucuronidase activity was used as an independent cell marker. Our findings demonstrate that inferior olive cell death in staggerer mutant mice is an indirect effect of staggerer gene action. Thus as for the granule cells, the loss of olivary neurons most likely results from a target related cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.