Abstract

Rhodococcus erythropolis cells growing in a cholesterol-free glycerol-containing mineral medium displayed very low levels of a cell-wall-bound cholesterol oxidase activity. Addition of cholesterol induced a marked increase in the synthesis of this enzyme, which reached a maximum within 6 days and was subsequently followed by the appearance of extracellular cholesterol oxidase in the culture broth. Significant levels of induction were only achieved when cholesterol emulsified with Tween 80. The presence of chloramphenicol at the time of induction completely prevented the emergence of both enzymatic forms, suggesting the requirement of de novo protein synthesis. Upon transfer of cholesterol-growing cultures to fresh medium lacking cholesterol, the extracellular cholesterol oxidase was quickly erased, while the activity of the particulate enzyme decreased sharply. The electrophoretic pattern on native Western blotting as well as on sodium dodecyl sulphate/polyacrylamide gels, together with kinetic data, strongly support the idea that the particulate and extracellular cholesterol oxidases are two different forms of the same enzyme with an estimated molecular mass of 55 kDa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call