Abstract
The glycosylation of pharmaglycoproteins from recombinant cell lines can be affected by an uncontrolled accumulation of ammonium in the medium. Glucosamine-6-phosphate isomerase (GPI) has been proposed as the key enzyme responsible for elevating the intracellular UDP-N-acetylhexosamine pool (UDPGNAc) by accepting ammonium from the medium of cultured mammalian cells. As previously reported, the increased UDPGNAc pool then affects the N-glycan complexity in glycoproteins. To understand the entry of extracellular ammonium into the cellular metabolism, GPI has been isolated to homogeneity from BHK-21 cells and characterized. Thus, the complete pathway by which ammonium enters the cellular metabolism was elucidated. To reduce the negative effects of ammonium, GPI was inhibited using two different strategies. First, the addition of mannose to the culture media and, second, antisense RNA expression. In both cases, the cellular UDPGNAc pool was suppressed in the presence of high ammonium concentrations in the medium. However, constant suppression of the UDPGNAc pool could not be achieved by antisense RNA expression because antisense clones were apparently unstable. Further studies showed that the main reason for instability was the inducibility of GPI by its substrate ammonium. GPI was induced to a factor of two under ammonium-containing medium conditions. We propose gene knockout technology for GPI repression to obtain cell lines consisting of an UDPGNAc pool unaffected by the presence of ammonium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.