Abstract

During embryonic development, regulation of the zygotic genome may be mediated by inductive interactions and by cell-autonomous inheritance of informational material from the egg; we have studied certain aspects of such regulatory events in Xenopus laevis. Embryos cultured in Ca 2+ Mg 2+ - free medium can be dissociated and dispersed, eliminating cell-cell contact and thus precluding inductive interactions. Such manipulations revealed that activation of the muscle-specific α-actin genes is absolutely dependent upon cell contacts. Conversely, the endoderm-specific DG42 gene and the ectoderm-specific DG81 cytokeratin gene are activated in embryo cells dispersed throughout blastula stages and therefore appear to be controlled by inherited factors. Nevertheless, abnormal cell arrangements may prevent expression of the cytokeratin gene, suggesting that animal pole cells can be diverted from their normal ectodermal fate by inductive contact with vegetally derived cells. The interactions required for α-actin induction and inhibition of cytokeratin expression are independent of strong adhesion between embryonic cells mediated by high concentrations of divalent cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.