Abstract
Articular cartilage is a permanent tissue whose cells do not normally take part in the endochondral ossification process. To determine whether articular chondrocytes possess the potential to express traits associated with this process such as cell hypertrophy and type X collagen, chondrocytes were isolated from adult chicken tibial articular cartilage and maintained in long-term suspension cultures. As a positive control in these experiments, we used parallel cultures of chondrocytes from the caudal portion of chick embryo sternum. Both articular and sternal chondrocytes readily proliferated and progressively increased in size with time in culture. Many had undergone hypertrophy by 4–5 weeks. Analysis of medium-released collagenous proteins revealed that both articular and sternal chondrocytes initiated type X collagen synthesis between 3 and 4 weeks of culture; synthesis of this macromolecule increased with further growth. Immunofluorescence analysis of 5-week-old cultures showed that about 15% of articular chondrocytes and 30% of sternal chondrocytes produced type X collagen; strikingly, there appeared to be no obvious relationship between type X collagen production and cell size. The results of this study show that articular chondrocytes from adult chicken tibia possess the ability to express traits associated with endochondral ossification when exposed to a permissive environment. They suggest also that the process of cell hypertrophy and initiation of type X collagen synthesis are independently regulated both in articular and sternal chondrocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.