Abstract

Unique functional materials provide a platform as scaffolds for cell/tissue regeneration. Investigation of cell-materials’ chemical and biological interactions will enable the application of more functional materials in the area of bioengineering, which provides a pathway to the novel treatment for patients who suffer from tissue/organ damage and face the limitation of donation sources. Many studies have been made into tissue/organ regeneration. Development of new substrate materials as platforms for cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the investigation of novel ultrananocrystalline diamond (UNCD) films as substrate/scaffold materials for developmental biology. Specially designed quartz dishes have been coated with different types of UNCD films and cells were subsequently seeded on those films. Results showed the cells’ growth on UNCD-coated culture dishes are similar to cell culture dishes with little retardation, indicating that UNCD films have no or little inhibition on cell proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms of cell adhesion on UNCD surfaces are proposed based on the experimental results. The comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated dishes with matrix-assisted laser desorption/ionization—time-of-flight mass spectroscopy (MALDI-TOF MS) and X-ray photoelectron spectroscopy (XPS) analyses provided valuable data to support the mechanisms proposed to explain the adhesion and proliferation of cells on the surface of the UNCD platform.

Highlights

  • Worldwide research is being performed to achieve regeneration of tissues and organs to repair diseased or damaged tissues and organs in the human body [1,2], which are in limited supply

  • Alternative to the materials mentioned above, in this paper we report our studies of cell growth on different types of ultrananocrystalline diamond (UNCD) surfaces as well as on diamond-powder-seeded surfaces

  • Different UNCD films were synthesized in a microwave plasma chemical vapor deposition (MPCVD) system on quartz plates that were heated to 800 °C

Read more

Summary

Introduction

Worldwide research is being performed to achieve regeneration of tissues and organs to repair diseased or damaged tissues and organs in the human body [1,2], which are in limited supply. This bioengineering approach provides treatment by growing regenerative tissue/organs on artificial substrates in vitro and implanting them back into the damaged areas of the body. Investigation of biomaterials as artificial platforms for cell growth and differentiation is one of the most important areas in regenerative medicine. Large-scale cell culture systems will be important to grow sufficient cells in vitro [3,4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.