Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutation in the X-linked MECP2 gene. Random X-inactivation produces a mosaic of mutant (MT) and wild-type (WT) neurons in female Mecp2+/− (het) mice. Many RTT symptoms are alleviated by increasing activity in medial prefrontal cortex (mPFC) in RTT model mice (Howell et al., 2017). Using a GFP-MeCP2 fusion protein to distinguish WT from MT pyramidal neurons in mPFC we found cell autonomous (cell genotype specific) and non-autonomous effects of MeCP2 deficiency on spontaneous excitatory/inhibitory balance, nicotinic acetylcholine receptor (nAChR) currents and evoked activity. MT Layer 5 and 6 (L5, L6) neurons of male nulls, and MT L6 of het mice had reduced spontaneous excitatory synaptic input compared to WT in wild-type male (WTm), female (WTf) and het mice. Inhibitory synaptic charge in MT L6 equaled WT in 2–4-month hets. At 6–7 months inhibitory charge in WT in het slices was increased compared to both MT in het and WT in WTf; however, in hets the excitatory/inhibitory charge ratio was still greater in WT compared to MT. nAChR currents were reduced in L6 of nulls and MT L6 in het slices compared to WT neurons of het, WTm and WTf. At 2–4 months, ACh perfusion increased frequency of inhibitory currents to L6 neurons equally in all genotypes but increased excitatory inputs to MT and WT in hets less than WT in WTfs. Unexpectedly ACh perfusion evoked greater sustained IPSC and EPSC input to L5 neurons of nulls compared to WTm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call