Abstract
The N-glycosylation profile of a monoclonal antibody (mAb) is a critical quality attribute in relation to its therapeutic application. The control of this profile during biomanufacture is difficult because of the multiple parameters that affect the glycosylation metabolism within the cell and the environment in which the cell is grown. One of the approaches that can be used to produce a preferred glycan profile or a single glycoform is through chemoenzymatic remodeling during the isolation of a mAb. Here we describe protocols that can be utilized to produce preferred glycoforms that include galactosylated, agalactosylated, or sialylated glycoforms following isolation of a mAb. Methods for analysis and assignment of structures of the samples following glycoengineering are also described. Chemoenzymatic modeling of mAb glycans has the potential for scale-up and to be introduced into biomanufacturing of mAbs with higher specific therapeutic activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.