Abstract

Proper folliculogenesis is fundamental to obtain a competent oocyte that, once fertilized, can support the acquisition of embryo developmental competence and pregnancy. MicroRNAs (miRNAs) are crucial regulators of folliculogenesis, which are expressed in the cumulus-oocyte complex and in granulosa cells and some can also be found in the bloodstream. These circulating miRNAs are intensively studied and used as diagnostic/prognostic markers of many diseases, including gynecological and pregnancy disorders. In addition, serum contains small amounts of cell-free DNA (cfDNA), presumably resulting from the release of genetic material from apoptotic/necrotic cells. The quantification of nucleic acids in serum samples could be used as a diagnostic tool for female infertility. An overview of the published literature on miRNAs, and particularly on the use of circulating miRNAs and cfDNA as non-invasive biomarkers of gynecological diseases, was performed (up to January 2014). In the past decade, cell-free nucleic acids have been studied for potential use as biomarkers in many diseases, particularly in gynecological cancers, ovarian and endometrial disorders, as well as in pregnancy-related pathologies and fetal aneuploidy. The data strongly suggest that the concentration of cell-free nucleic acids in serum from IVF patients or in embryo culture medium could be related to the ovarian hormone status and embryo quality, respectively, and be used as a non-invasive biomarker of IVF outcome. The profiling of circulating nucleic acids, such as miRNAs and cfDNA, opens new perspectives for the diagnosis/prognosis of ovarian disorders and for the prediction of IVF outcomes, namely (embryo quality and pregnancy).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.