Abstract

ObjectiveAlthough low-dose computed tomography has been proven effective to reduce lung cancer–specific mortality, a considerable proportion of surgically resected high-risk lung nodules were still confirmed pathologically benign. There is an unmet need of a novel method for malignancy classification in lung nodules. MethodsWe recruited 307 patients with high-risk lung nodules who underwent curative surgery, and 247 and 60 cases were pathologically confirmed malignant and benign lung lesions, respectively. Plasma samples from each patient were collected before surgery and performed low-depth (5×) whole-genome sequencing. We extracted cell-free DNA characteristics and determined radiomic features. We built models to classify the malignancy using our data and further validated models with 2 independent lung nodule cohorts. ResultsOur models using one type of profile were able to distinguish lung cancer and benign lung nodules at an area under the curve metrics of 0.69 to 0.91 in the study cohort. Integrating all the 5 base models using cell-free DNA profiles, the cell-free DNA–based ensemble model achieved an area under the curve of 0.95 (95% CI, 0.92-0.97) in the study cohort and 0.98 (95% CI, 0.96-1.00) in the validation cohort. At a specificity of 95.0%, the sensitivity reached 80.0% in the study cohort. With the same threshold, the specificity and sensitivity had similar performances in both validation cohorts. Furthermore, the performance of area under the curve reached 0.97 in both the study and validation cohorts when considering the radiomic profile. ConclusionsThe cell-free DNA profiles-based method is an efficient noninvasive tool to distinguish malignancies and high-risk but pathologically benign lung nodules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.