Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental biological process that plays a central role in embryonic development, tissue regeneration, and cancer metastasis. Transforming growth factor-β (TGFβ) is a potent inducer of this cellular transition, which is composed of transitions from an epithelial state to intermediate or partial EMT state(s) to a mesenchymal state. Using computational models to predict cell state transitions in a specific experiment is inherently difficult for reasons including model parameter uncertainty and error associated with experimental observations. In this study, we demonstrate that a data-assimilation approach using an ensemble Kalman filter, which combines limited noisy observations with predictions from a computational model of TGFβ-induced EMT, can reconstruct the cell state and predict the timing of state transitions. We used our approach in proof-of-concept “synthetic” in silico experiments, in which experimental observations were produced from a known computational model with the addition of noise. We mimic parameter uncertainty in in vitro experiments by incorporating model error that shifts the TGFβ doses associated with the state transitions and reproduces experimentally observed variability in cell state by either shifting a single parameter or generating “populations” of model parameters. We performed synthetic experiments for a wide range of TGFβ doses, investigating different cell steady-state conditions, and conducted parameter studies varying properties of the data-assimilation approach including the time interval between observations and incorporating multiplicative inflation, a technique to compensate for underestimation of the model uncertainty and mitigate the influence of model error. We find that cell state can be successfully reconstructed and the future cell state predicted in synthetic experiments, even in the setting of model error, when experimental observations are performed at a sufficiently short time interval and incorporate multiplicative inflation. Our study demonstrates the feasibility and utility of a data-assimilation approach to forecasting the fate of cells undergoing EMT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.